Abstract
Wide bandgap semiconductors are ideally suited for nonlinear optoelectronics. Because their bandgaps are larger than 2 eV, simultaneous absorption of two or more near-infrared photons is necessary to excite the electrons from the valence to the conduction band. Understanding of the processes that affect multiphoton absorption is important in the design and fabrication of optoelectronic devices. Here, we present an overview of the photocurrent response in photodetectors made from GaP, GaN, InGaN, and SiC when they are excited by photons at 1.2 eV. Recent measurements have shown that sub-bandgap absorptions contribute to photocurrent in GaP, and, thus, it is not a good material for nonlinear optoelectronics. Similarly, the response of GaN is affected by long-lived trapped charges. Photocurrents in InGaN and SiC are predominantly from three- and four-photon absorption, respectively. Moreover, these materials can withstand excitation intensities higher than 1011 W cm−2, making them appropriate platforms for nonlinear optoelectronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.