Abstract

We propose a scheme to generate a new kind of non-Gaussian state—the Laguerre polynomial excited coherent state (LPECS)—by using multiphoton catalysis with coherent state input. The nonclassical properties of the LPECS are studied in terms of nonclassical depth, Mandel’s parameter, second-order correlation, quadrature squeezing, and the negativity of the Wigner function (WF). It is found that the LPECS is highly nonclassical and its nonclassicality depends on the amplitude of the coherent state, the catalysis photon number, and the parameters of the unbalanced beam splitter (BS). In particular, the maximum degree of squeezing can be enhanced by increasing the catalysis photon number. In addition, we examine the effect of decoherence using the WF, which shows that the negative region, the characteristic time of decoherence, and the structure of the WF are affected by catalysis photon number and the parameters of the unbalanced BS. Our work provides general analysis on how to prepare polynomial quantum states, which may be useful in the fields of quantum information and quantum computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.