Abstract

We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the codespace performed via passive linear optics, and with generalized non-linear phase operations that are polynomials of the photon-number operator in the codespace. This encoding scheme can thus be applied to any computation with coherent state inputs, and the computation proceeds via a combination of passive linear optics and generalized non-linear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted codewords. Whilst we focus on coherent state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.