Abstract

Elevated structures are prevalent along shorelines that are susceptible to storm surge flooding to improve coastal resilience. In this work, we explore the influence of front wall inclination on the pressures and forces attracted by an elevated structure in response to extreme wave impact. Multiphase smoothed-particle hydrodynamics was used to examine a typical two-story building 6 m high and 10 m long with three different frontal wall inclinations impinged by a single breaking wave propagating landwards (from left to right). Relative to a vertical surface, both positive (clockwise) and negative (counterclockwise) inclinations of the front wall altered breaking wave pressures depending on the structure's position relative to the still-water level (SWL). When the bottom of the structure is located below the SWL (negative air gap), a positive inclination decreased breaking wave loads by up to 21 %, while a negative inclination may result in 50 % higher pressure maxima. However, for a structure elevated above the SWL (positive air gap), negative and positive inclinations witnessed reductions to the pressure maxima of 35 % and 10 %, respectively, when compared with a vertical surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.