Abstract

The wave-driven vehicle is a surface vehicle powered by capturing wave energy, which is required to face harsh sea conditions when performing tasks in parts of the ocean. However, wave-driven vehicles are usually small in size, and their seakeeping and speed are generally poor in high sea conditions. Wave driven vehicles are usually equipped with rigid connected hydrofoils to capture wave energy, which can provide power for wave driven vehicles and enhance seakeeping. Aiming at the long-term survival and operation requirements of wave-driven vehicle under high sea conditions, this paper studies the effect of high sea conditions launching wing on the self- propelled performance of wave-driven vehicle. After installing rigid connected hydrofoils on wave-driven vehicles, the structural parameters of the hydrofoils are changed, and the kinematic and dynamic responses of wave-driven vehicles at 0–90 ° wave encounter Angle are numerically simulated based on CFD method. The effects of underwater wing depth, hydrofoil spacing and hydrofoil span length on the self- propelled performance of wave-driven vehicles are analyzed. Based on this, the structural parameters of rigidly connected hydrofoils are optimized, which improves the seakeeping and rapidity of wave-driven vehicles in high sea conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.