Abstract

This work focuses on the main issues related to noise measurements in cavitation tunnels. The scope of the paper is to twofold: to obtain a better understanding on the main phenomena underlying experiments and to define consistent cavitation tunnel measurement corrections for background noise, wall reflections, and distance normalisation. To this aim, the acoustic field generated by the ITTC standard cavitator model inside a cavitation tunnel is predicted by Lighthill’s acoustic analogy and solved through a finite element method that inherently accounts for the presence of the walls. Sources of sound detection relies on two multiphase CFD solvers, namely, the homogeneous mixture model—Volume of Fluid method and the Euler–Euler formulations. Starting from the computation of the sound pressure level in the free field with the assumption of spherical spreading without absorption, corrections from losses and spreading are detected by the above approach. Background-corrected sound pressure levels are identified and then compared with the source levels measured in the cavitation tunnel of the Potsdam Model Basin (SVA). It is found that free-field computations corrected by tunnel-induced effects match well with experiments up to 100 Hz (in the one-third octave band), whereas relevant discrepancies arise out of this range that need further investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.