Abstract
The upwelling phenomenon plays a vital role within marine ecosystems, transporting essential nutrients from the bottom to the surface and boosting biological productivity. However, the bacterial community structure in upwelling zones along the western coast of India (WCI) is understudied. This research systematically examines bacterial diversity across three seasons—pre-monsoon (PR), monsoon (MN), and post-monsoon (PM)—using next-generation sequencing. Our findings show distinct spatial patterns of bacterial communities in the Arabian Sea and demonstrate that ecological variations influence bacterial distribution in this dynamic environment. During MN, the bacterial community exhibited greater species diversity but lower overall abundance compared to PR and PM. Non-Metric MDS cluster analysis revealed a 78% similarity (at order level) between PR and PM, indicating that MN supports unique bacterial diversity. KEGG analysis showed significant seasonal variations in metabolic functions, with increased functional potential during MN. Additionally, Carbohydrate-Active enZymes (CAZymes) analysis revealed distinct seasonal profiles, among which the GH13 enzymes were the most prevalent glycoside hydrolases during MN, predominantly being sucrose phosphorylase and glucosidase, known for breaking down glucan deposits derived from phytoplankton. The CAZymes profiles supported taxonomic and KEGG pathway findings, reinforcing that microbial communities are seasonally distinct and functionally adapted to changing availability of nutrients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.