Abstract
The differential scheme is extended to predict the effective properties of multiphase magnetoelectroelastic composite materials. The prediction of effective properties is done gradually by adding a series of incremental additions of a small volume of particulate phase materials to an initial material (matrix phase). The construction process is compatible with high volume concentration of inclusion. A system of coupled differential equations is formulated and its numerical solution leads to effective properties of reinforced magnetoelectroelastic composites. For the numerical results, two-phase and three-phase magnetoelectroelastic composites are considered. The effective properties are presented as function of volume fractions and shapes of inclusions and compared with predictions based on the Mori–Tanaka and incremental self-consistent models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have