Abstract

This paper studies multiperiodicity and attractivity for a class of recurrent neural networks (RNNs) with unsaturating piecewise linear transfer functions and variable delays. Using local inhibition, conditions for boundedness and global attractivity are established. These conditions allow coexistence of stable and unstable trajectories. Moreover, multiperiodicity of the network is investigated by using local invariant sets. It shows that under some interesting conditions, there exists one periodic trajectory in each invariant set which exponentially attracts all trajectories in that region correspondingly. Simulations are carried out to illustrate the theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.