Abstract

Low earth orbit (LEO) satellite networks like Iridium have played a pivotal role in providing ubiquitous network access services to areas without terrestrial infrastructure because of their potential for global coverage and high bandwidth availability. With low orbit and short range as compared to geostationary satellites, LEO satellites are accessible by mobile devices with limited transmission power and small gain antennas. The drawback, however, is that LEO satellites move fast across the sky with average contact time in the order of 10 minutes, thus requiring frequent handover from one satellite to the next. To achieve smooth handover and efficiently utilize constellation capacity, we propose to use Multipath TCP (MPTCP) in LEO systems and maintain parallel, simultaneous connections between terrestrial handpoints via multiple satellites. In this paper, we discuss the feasibility of using MPTCP over LEO satellite networks and propose a framework of MPTCP-Routing design. Then the performance of this protocol is evaluated through simulation. We show that compared to traditional “single-path” TCP, MPTCP significantly improves throughput performance and prevents the interruption of transmission during handover. Furthermore, we show that our MPTCP-Routing interaction is essential for the end-to-end session to quickly recover from handover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call