Abstract
Low earth orbit (LEO) satellite network is an important development trend for future mobile communication systems, which can truly realize the "ubiquitous connection" of the whole world. In this paper, we present a cooperative computation offloading in the LEO satellite network with a three-tier computation architecture by leveraging the vertical cooperation among ground users, LEO satellites, and the cloud server, and the horizontal cooperation between LEO satellites. To improve the quality of service for ground users, we optimize the computation offloading decisions to minimize the total execution delay for ground users subject to the limited battery capacity of ground users and the computation capability of each LEO satellite. However, the formulated problem is a large-scale nonlinear integer programming problem as the number of ground users and LEO satellites increases, which is difficult to solve with general optimization algorithms. To address this challenging problem, we propose a distributed deep learning-based cooperative computation offloading (DDLCCO) algorithm, where multiple parallel deep neural networks (DNNs) are adopted to learn the computation offloading strategy dynamically. Simulation results show that the proposed algorithm can achieve near-optimal performance with low computational complexity compared with other computation offloading strategies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.