Abstract

We investigate effective interference management for Low Earth Orbit (LEO) satellite networks that provide downlink services to ground users and share the same frequency spectrum range. Since there are multi-group LEO satellites with different constellation orbits, the ground users will experience time-varying interference due to the overlapping of main/side lobes of the satellite beams, which becomes even challenging when the interfering satellites cannot communicate directly. To address the problem, we consider two LEO satellite groups that provide communication service in the same ground area, while competing for communication resources. We develop solutions that maximize the throughput and manage the time-varying interference under a certain level, without explicit message exchanges between the satellite groups. By exploiting statistical learning and deep reinforcement learning techniques, we develop learning-based resource allocation schemes and evaluate their performance through extensive simulations. We show their effectiveness under different reward settings and different interference managements, and demonstrate that a Deep Q-Network (DQN)-based scheme can achieve the close-to-optimal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.