Abstract

The study of topological effects in physics is a hot area, and only recently researchers were able to address the important issues of topological properties of interacting quantum systems. But it is still a great challenge to describe multi-particle and interaction effects. Here, we introduce multi-particle Wannier states for interacting systems with co-translational symmetry. We reveal how the shift of multi-particle Wannier state relates to the multi-particle Chern number, and study the two-boson Thouless pumping in an interacting Rice-Mele model. In addition to the bound-state Thouless pumping in which two bosons move unidirectionally as a whole, we find topologically resonant tunneling in which two bosons move unidirectionally, one by the other, provided the neighboring-well potential bias matches the interaction energy. Our work creates a new paradigm for multi-particle topological effects and lays a cornerstone for detecting interacting topological states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.