Abstract

Agriculture is a distinct sector of a country's economy. In recent years, new patterns have evolved in the agricultural industry. In conjunction with sensor scaling down and precision agriculture, the field of remote sensor networks, such as the wireless sensor network (WSN), was developed. Its major purpose is to make horticultural operations simpler to identify, assess, and manage. This paper uses the proposed DCNN to predict soil moisture and plan irrigation for precision agriculture farmers to reduce water consumption used for cultivation and increase production yield by comparing water content during various stages of plant growth and integrating IoT applications into agriculture. It also optimizes the water level for future irrigation decisions to maintain crop growth and water stability. The data must be served and stored in the form of a grid view, according to Apriori and GRU (gated recurrentunit). Using numerous sensor and parameter modelling methodologies, this system assists in the prediction of irrigation planning based on irrigation needs. The predicted parameters include soil moisture, temperature, and humidity. This observed experimental data supports smart irrigation in crop production with a high yield and little water use. DCNN has a 98.5% experimental result accuracy rate and the MSE value is predicted in DCNN 99.25% of the time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.