Abstract

Using Quantum Monte Carlo we compute thermodynamics and spectra for the orbitally degenerate Hubbard model in infinite spatial dimensions. With increasing orbital degeneracy we find in the one-particle spectra: broader Hubbard bands (consistent with increased kinetic energy), a narrowing Mott gap, and increasing quasi-particle spectral weight. In opposition, Hund's rule exchange coupling decreases the critical on-site Coulomb energy for the Mott transition. The metallic regime resistivity for two-fold degeneracy is quadratic-in-temperature at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.