Abstract

In terms of fetal muscle growth, development, and health, maternal nutrition is a crucial influence, although the exact biochemical mechanism by which this occurs is still not fully understood. To examine the potential impacts of maternal dietary restriction on fetal muscle development, the sheep maternal dietary restriction model was developed for this study. In our study, 12 pregnant ewes were evenly split into two experimental groups and fed either 75% or 100% of a maternal nutrient. In addition, a multi-omics analysis was used to study the embryonic longissimus dorsis on gestational days (GD) 85 and 135. The fetal weight at GD 135 was significantly below normal due to the maternal restricted diet (p < 0.01). When fetuses were exposed to the dietary deficit, 416 mRNAs and 40 proteins were significantly changed. At GD 85, the multi-omics analysis revealed that maternal dietary restriction led to a significant up-regulation of the cell cycle regulator CDK2 gene in the cellular senescence signaling pathway, and the results of the qRT-PCR were similar to the multi-omics analysis, which showed that SIX1, PAX7, the cell cycle factors CDK4 and CDK6, and the BCL-2 apoptosis factor were up-regulated and several skeletal muscle marker genes, such as MYF5 and MyoD were down-regulated. At GD 135, maternal dietary restriction blocks the muscle fiber differentiation and maturation. The multi-omics analysis revealed that the TEAD1 gene was in the Hippo signaling pathway, the muscle marker genes MYF5 and MyoG were significantly down-regulated, and the TEAD1 binding of the down-regulated VGLL3 gene might be potential mechanisms affecting myofiber differentiation and maturation. Knocking down the CDK2 gene could inhibit the proliferation of primary embryonic myoblasts, and the expression levels of cell cycle regulatory factors CDK4 and CDK6 were significantly changed. Under low nutrient culture conditions, the number of myoblasts decreased and the expression of CDK2, CDK6, MYF5, PAX7 and BCL-2 changed, which was in perfect agreement with the multi-omics analysis. All of the findings from our study helped to clarify the potential effects of maternal dietary restriction on fetal muscle growth and development. They also provided a molecular foundation for understanding the molecular regulatory mechanisms of maternal nutrition on fetal muscle growth and development, as well as for the development of new medications and the management of related metabolic diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.