Abstract
When preparing for the widespread adoption of Electric Vehicles (EVs), an important issue is to use a proper EVs’ charging/discharging scheduling model that is able to simultaneously consider economic and environmental goals as well as technical constraints of distribution networks. This paper proposes a multi-objective operational scheduling method for charging/discharging of EVs in a smart distribution system. The proposed multi-objective framework, based on augmented ε-constraint method, aims at minimizing the total operational costs and emissions. The Vehicle to Grid (V2G) capability as well as the actual patterns of drivers are considered in order to generate the Pareto-optimal solutions. The Benders decomposition technique is used in order to solve the proposed optimization model and to convert the large scale mixed integer nonlinear problem into mixed-integer linear programming and nonlinear programming problems. The effectiveness of the proposed resources scheduling approach is tested on a 33-bus distribution test system over a 24-h period. The results show that the proposed EVs’ charging/discharging method can reduce both of operation cost and air pollutant emissions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have