Abstract
Abstract Multi-objective meta-heuristics are used to optimize water distribution networks (WDNs) as they can achieve a near-optimal balance between cost and resilience in a unified platform. Most of these algorithms include tuning of algorithm-specific control parameters for higher optimization efficiency, leading to an increased computational effort. The current study is inspired by the desire to address the above problem. The goal is to formulate a multi-objective Rao algorithm (MORao) considering an existing modified resilience index (MRI) in the optimal design of WDNs. The model is demonstrated to attain Pareto-optimal solutions to complex WDN problems without exclusive parameter tuning. The algorithm is written in Python and is linked to a hydraulic model of a WDN implemented in EPANET 2.2 using pressure-driven demand (PDD) analysis. The method is demonstrated on three widely used networks: Two-loop, Goyang, and Fossolo. The Pareto-optimal solutions examine a tradeoff between two objectives to recognize competitive solutions. The network's resilience is increased 2.5 times by only 0.8 times increase in least-cost of Two-loop network. This research indicates that this method can achieve a satisfactory level of performance with a limited number of function evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.