Abstract

Abstract In plastic injection molding (PIM), the process parameters determine the quality and productivity of molded parts. The traditional injection molding process analysis method mainly relies on production experience. It is lack of advanced and rationality and seriously increases production costs. In this paper, a hybrid multiobjective optimization method is proposed to minimize the warpage, volumetric shrinkage and cycle time. The method integrates orthogonal experimental design, numerical simulation, and the metamodel method with multiobjective optimization. The orthogonal experiment chooses seven parameters as the design variables to generate sampling data and determines key factors that affect product quality by the numerical simulation. A gradient-enhanced Kriging (GEK) surrogate model strategy is introduced to construct the response predictors to calculate objective responses in the global design space. Multipopulation differential evolution (MPDE) is conducted to locate the Pareto-optimal solutions, where the response predictors are taken as the fitness functions. This study shows that the proposed GEK-MPDE method can reduce warpage, volumetric shrinkage and cycle time by 5.7 %, 4.7 %, and 18.1 %, respectively. It helps plastic industry to realize collaborative scheduling of multiple tasks between different production lines by providing a low-cost and effective dynamic control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.