Abstract
This paper establishes a multi-objective optimization model for railway heavy-haul trains, focusing on reducing carbon emissions and improving transport efficiency. The model integrates optimization of the route and the vehicle load rate, significantly reducing carbon emissions and enhancing transport efficiency. It addresses the challenges and characteristics of heavy-haul trains, introducing multi-objective optimization problems related to transport carbon emissions and efficiency. Using a pigeon-inspired optimization algorithm, the model considers joint constraints between carbon emissions and transport efficiency objectives. To overcome challenges in multi-objective transportation problems, the paper proposes a forward-learning pigeon-inspired optimization algorithm based on a surrogate-assisted model. This approach calculates the quality of the candidate solution using a surrogate model, reducing time costs. The algorithm employs a forward-learning strategy to enhance learning from non-dominant solutions. Experimental validation with benchmark functions confirms the effectiveness of the model and offers optimized solutions. The proposed method reduces carbon emissions while maintaining transport efficiency, contributing innovative ideas for the development of sustainable heavy-duty trains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.