Abstract

Non-orthogonal multiple access (NOMA) is a promising candidate for the sixth generation wireless communication networks due to its high spectrum efficiency (SE), energy efficiency (EE), and better connectivity. It can be applied in cognitive radio networks (CRNs) to further improve SE and user connectivity. However, the interference caused by spectrum sharing and the utilization of non-orthogonal resources can downgrade the achievable performance. In order to tackle this issue, intelligent reflecting surface (IRS) is exploited in a downlink multiple-input-single-output (MISO) CRN with NOMA. To realize a desirable tradeoff between SE and EE, a multi-objective optimization (MOO) framework is formulated under both the perfect and imperfect channel state information (CSI). An iterative block coordinate descent (BCD)-based algorithm is exploited to optimize the beamforming design and IRS reflection coefficients iteratively under the perfect CSI case. A safe approximation and the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ \mathcal {S}$ </tex-math></inline-formula> -procedure are used to address the non-convex infinite inequality constraints of the problem under the imperfect CSI case. Simulation results demonstrate that the proposed scheme can achieve a better balance between SE and EE than baseline schemes. Moreover, it is shown that both SE and EE of the proposed algorithm under the imperfect CSI can be significantly improved by exploiting IRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call