Abstract
This study addresses the resource-constrained project scheduling problem with precedence relations, and aims at minimizing two criteria: the makespan and the total weighted start time of the activities. To solve the problem, five multi-objective metaheuristic algorithms are analyzed, based on Multi-objective GRASP (MOG), Multi-objective Variable Neighborhood Search (MOVNS) and Pareto Iterated Local Search (PILS) methods. The proposed algorithms use strategies based on the concept of Pareto Dominance to search for solutions and determine the set of non-dominated solutions. The solutions obtained by the algorithms, from a set of instances adapted from the literature, are compared using four multi-objective performance measures: distance metrics, hypervolume indicator, epsilon metric and error ratio. The computational tests have indicated an algorithm based on MOVNS as the most efficient one, compared to the distance metrics; also, a combined feature of MOG and MOVNS appears to be superior compared to the hypervolume and epsilon metrics and one based on PILS compared to the error ratio. Statistical experiments have shown a significant difference between some proposed algorithms compared to the distance metrics, epsilon metric and error ratio. However, significant difference between the proposed algorithms with respect to hypervolume indicator was not observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.