Abstract
This work treats the single machine scheduling problem in which the setup time depends on the sequence and the job family. The objective is to minimize the makespan and the total tardiness. In order to solve the problem two multi-objective algorithms are analyzed: one based on Multi-objective Variable Neighborhood Search (MOVNS) and another on Pareto Iterated Local Search (PILS). Two literature algorithms based on MOVNS are adapted to solve the problem, resulting in the MOVNS_Ottoni and MOVNS_Arroyo variants. Also, a new perturbation procedure for the PILS is proposed, yielding the PILS1 variant. Computational experiments realized over instances randomly generated show that PILS1 is statistically better than all other algorithms in relation to the hypervolume and epsilon metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.