Abstract

Coal-fired power plants are widely used to achieve a power balance in grids with renewable energy, which leads to new requirements for speediness in load dispatch. This paper presents a nondominated-sorting grey wolf optimizer algorithm (NSGWO) for the multiobjective load dispatch of coal-fired power plants that employed efficient nondominated sorting, a reference-point selection strategy, and a simulated binary crossover operator. The optimization results of the benchmark functions indicated that the NSGWO algorithm had a better accuracy and a better distribution than the traditional multiobjective grey wolf optimizer algorithm. Regarding the load dispatch of economy, environmental protection, and speediness strategies, the NSGWO had the best performance of all the simulated algorithms. The optimal-compromise solutions of the economy and speediness strategies of the NSGWO algorithm had a good distribution, which elucidated that this novel algorithm was favorable to allowing coal-fired power plants to accommodate renewable energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call