Abstract
This paper proposes a multiobjective layout optimization method for the conceptual design of robot cellular manufacturing systems. Robot cellular manufacturing systems utilize one or more flexible robots which can carry out a large number of operations, and can conduct flexible assemble processes. The layout design stage of such manufacturing systems is especially important since fundamental performances of the manufacturing system under consideration are determined at this stage. In this paper, the design criteria for robot cellular manufacturing system layout designs are clarified, and objective functions are formulated. Next, layout design candidates are represented using a sequence-pair scheme to avoid interference between assembly system components, and the use of dummy components is proposed to represent layout areas where components are sparse. A multiobjective genetic algorithm is then used to obtain Pareto optimal solutions for the layout optimization problems. Finally, several numerical examples are provided to illustrate the effectiveness and usefulness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.