Abstract

A new concept is presented in this paper of quasi-dynamic cell formation for the design of a cellular manufacturing system, based on analysing the fact that static and dynamic cell formation could not reflect the real situation of a modern cellular manufacturing system. Further, workforce resources are integrated into quasi-dynamic cell formation and thus a quasi-dynamic dual-resource cell-formation problem is proposed. For solving this problem, this paper first establishes a non-linear mixed integer programming model, where inter-cell and intra-cell material cost, machine relocation cost, worker operation time, loss in batch quality and worker salary are to be minimised. Then, a multi-objective GA is developed to solve this model. Finally, a real life case study is conducted to validate the proposed model and algorithm. The actual operation results show that the case enterprise significantly decreases its material handling cost and workforce number and obviously increases its product quality after carrying out the obtained scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call