Abstract

This paper focuses on robust optimal sliding mode control (SMC) law for uncertain discrete robotic systems, which are known by their highly nonlinearities, unmodeled dynamics, and uncertainties. The main results of this paper are divided into three phases. In the first phase, in order to design an optimal control law, based on the linear quadratic regulator (LQR), the robotic system is described as a linear time-varying (LTV) model. In the second phase, as the performances of the SMC greatly depend on the choice of the sliding surface, a novel method based on the resolution of a Sylvester equation is proposed. The compensation of both disturbances and uncertainties is ensured by the integral sliding mode control. Finally, to solve the problem accompanying the LQR synthesis, genetic algorithm (GA) is used as an offline tool to search the two weighting matrices. The main contribution of this paper is to consider a multi-objective optimization problem, which aims to minimize not only the chattering phenomenon but also other control performances. A novel dynamically aggregated objective function is proposed in such a way that the designer is provided, once the optimization is achieved, by a set of nondominated solutions and then he selects the most preferable alternative. To show the performance of the new controller, a selective compliance assembly robot arm robot (SCARA) is considered. The results show that the manipulator tracing performance is considerably improved with the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call