Abstract
In this paper, a novel multi-objective Bayesian optimization method is proposed for the sizing of analog/RF circuits. The proposed approach follows the framework of Bayesian optimization to balance the exploitation and exploration. Gaussian processes (GP) are used as the online surrogate models for the multiple objective functions. The lower confidence bound (LCB) functions are taken as the acquisition functions to select the data point with best Pareto-dominance and diversity. A modified non-dominated sorting based evolutionary multi-objective algorithm is proposed to find the Pareto Front (PF) of the multiple LCB functions, and the next simulation point is chosen from the PF of the multiple LCB functions. Compared with the multi-objective evolutionary algorithms (MOEA) and the state-of-the-art online surrogate model based circuit optimization method, our method can better approximate the Pareto Front while significantly reduce the number of circuit simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have