Abstract

In this paper, we propose a new multiobject visual tracking algorithm by submodular optimization. The proposed algorithm is composed of two main stages. At the first stage, a new selecting strategy of tracklets is proposed to cope with occlusion problem. We generate low-level tracklets using overlap criteria and min-cost flow, respectively, and then integrate them into a candidate tracklets set. In the second stage, we formulate the multiobject tracking problem as the submodular maximization problem subject to related constraints. The submodular function selects the correct tracklets from the candidate set of tracklets to form the object trajectory. Then, we design a connecting process which connects the corresponding trajectories to overcome the occlusion problem. Experimental results demonstrate the effectiveness of our tracking algorithm. Our source code is available at https://github.com/shenjianbing/submodulartrack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.