Abstract

Presently, Multi-Object tracking (MOT) is mainly applied for predicting the positions of many predefined objects across many successive frames with the provided ground truth position of the target in the first frame. The area of MOT gains more interest in the area of computer vision because of its applicability in various fields. Many works have been presented in recent years that intended to design a MOT algorithm with maximum accuracy and robustness. In this paper, we introduce an efficient as well as robust MOT algorithm using Mask R-CNN. The usage of Mask R-CNN effectively identifies the objects present in the image while concurrently creating a high-quality segmentation mask for every instance. The presented MOT algorithm is validated using three benchmark dataset and the results are extensive simulation. The presented tracking algorithm shows its efficiency to track multiple objects precisely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.