Abstract

We report a new photoresist based on a multinuclear tin-based macrocyclic complex and its performance for extreme UV (EUV) photolithography. The new photoresist has a trinuclear macrocyclic structure containing three salicylhydroxamic acid ligands and six Sn-CH3 bonds, which was confirmed by multinuclear nuclear magnetic resonance (NMR) and FT-IR spectroscopies and single-crystal X-ray diffraction study. The resist exhibited good humidity, air, and thermal stabilities, while showing good photochemical reactivity. Photochemical cross-linking of the resist was confirmed by X-ray photoelectron and solid-state NMR spectroscopic analyses. EUV photolithography with the 44 nm-thick film on a silicon wafer revealed a line-edge-roughness (LER) of 1.1 nm in a 20 nm half-pitch pattern. The Z-factor, a metric that gauges the performance of photoresists by considering the tradeoff between resolution, LER, and sensitivity (RLS), was estimated to be 1.28 × 10-8 mJ·nm3, indicating its great performance compared to the EUV photoresists reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.