Abstract

Multinuclear solid-state nuclear magnetic resonance (SSNMR) experiments have been performed on cisplatin and four related square-planar compounds. The wideband uniform rate smooth truncation – Carr–Purcell–Meiboom–Gill (WURST–CPMG) pulse sequence was utilized in NMR experiments to acquire 195Pt, 14N, and 35Cl ultra-wideline NMR spectra of high quality. Standard Hahn-echo and magic-angle spinning 195Pt NMR experiments are also performed to refine extracted chemical shielding (CS) tensor parameters. Platinum magnetic shielding (MS) tensor orientations are calculated using both plane-wave density functional theory (DFT) and standard DFT methods. The tensor orientations are shown to be highly constrained by molecular symmetry elements, but also influenced to some degree by intermolecular interactions. 14N WURST–CPMG experiments were performed on three compounds and electric field gradient (EFG) parameters (the quadrupolar coupling constant, CQ, and the asymmetry parameter, ηQ) are reported. First principles calculations of the 14N EFG tensor parameters and orientations and affirm their dependence on the local hydrogen bonding environment. 35Cl WURST–CPMG experiments on cisplatin and transplatin are reported, using two different static magnetic fields to extract EFG and CS tensor parameters, and 35Cl EFG tensor magnitudes and orientations are predicted using first principles calculations. Transverse (T2) relaxation data for all nuclei are used to investigate heteronuclear dipolar relaxation mechanisms, as well as the nature of the local hydrogen bonding environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call