Abstract
We present a Gauss-Newton-Krylov solver for large deformation diffeomorphic image registration. We extend the publicly available CLAIRE library to multi-node multi-graphics processing unit (GPUs) systems and introduce novel algorithmic modifications that significantly improve performance. Our contributions comprise (i) a new preconditioner for the reduced-space Gauss-Newton Hessian system, (ii) a highly-optimized multi-node multi-GPU implementation exploiting device direct communication for the main computational kernels (interpolation, high-order finite difference operators and Fast-Fourier-Transform), and (iii) a comparison with state-of-the-art CPU and GPU implementations. We solve a 2563-resolution image registration problem in five seconds on a single NVIDIA Tesla V100, with a performance speedup of 70% compared to the state-of-the-art. In our largest run, we register 20483 resolution images (25 B unknowns; approximately 152× larger than the largest problem solved in state-of-the-art GPU implementations) on 64 nodes with 256 GPUs on TACC's Longhorn system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Conference for High Performance Computing, Networking, Storage and Analysis : [proceedings]. SC (Conference : Supercomputing)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.