Abstract
With the development of hyperspectral sensors, nowadays, we can easily acquire large amount of hyperspectral images (HSIs) with very high spatial resolution, which has led to a better identification of relatively small structures. Owing to the high spatial resolution, there are much less mixed pixels in the HSIs, and the boundaries between these categories are much clearer. However, the high spatial resolution also leads to complex and fine geometrical structures and high inner-class variability, which make the classification results very “noisy.” In this paper, we propose a multimorphological superpixel (MMSP) method to extract the spectral and spatial features and address the aforementioned problems. To reduce the difference within the same class and obtain multilevel spatial information, morphological features (multistructuring element extended morphological profile or multiattribute filter extended multi-attribute profiles) are first obtained from the original HSI. After that, simple linear iterative clustering segmentation method is performed on each morphological feature to acquire the MMSPs. Then, uniformity constraint is used to merge the MMSPs belonging to the same class which can avoid introducing the information from different classes and acquire spatial structures at object level. Subsequently, mean filtering is utilized to extract the spatial features within and among MMSPs. At last, base kernels are obtained from the spatial features and original HSI, and several multiple kernel learning methods are used to obtain the optimal kernel to incorporate into the support vector machine. Experiments conducted on three widely used real HSIs and compared with several well-known methods demonstrate the effectiveness of the proposed model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have