Abstract
This study examines the predictability of weather over several regions in Africa using a multimodel superensemble technique developed at the Florida State University, which is an objective means of combining daily forecasts from multilevel global models. It is referred to as FSUSE and up to 7 different models are used to construct the superensemble. The benchmark reanalysis fields used are the precipitation data sets from CMORPH and all other global fields from ECMWF daily operational analysis. The FSUSE works by using multiple linear regression to derive weights from a comparison of each member model forecast to the benchmark analysis during a training period of the most recent 120 days, and these weights are passed to the forecast phase. This procedure removes the bias of each model and allows for an optimal linear combination of the individual model forecasts by taking account of the relative skill of each model to give a consensus forecast that is superior to the ensemble mean and all the members.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.