Abstract

Forecast combination has received a great deal of attention in the tourism domain. In this article, we propose a novel performance-based tourism forecast combination model by applying a multiple-criteria decision-making framework and the stochastic frontier analysis technique to determine combination weights for individual tourism forecast models. Thirteen time-series models are used to generate individual forecast tourism models, and five competing forecast combination models are selected to evaluate the forecast performance. Using the tourism forecast competition data set, we conclude that the proposed combination model significantly and statistically outperforms the five competing combination models in most cases based on multiple performance indicators. Our results show that the proposed model offers a good solution to identify optimal weights for individual tourism forecast models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.