Abstract

Energy harvesting systems are interesting for use in remote power supplies. Many such systems utilize the motion or deformation associated with vibration, converting the mechanical energy to electrical energy, and supplying power to other electronic devices. In terms of energy harvesting from mechanical vibrations, piezoelectric conversion has received much attention as it can directly convert applied strain energy into useable electric energy and easily be integrated into a microsystem. The removal of mechanical energy from a vibrating structure necessarily leads to a damping effect. This paper addresses the damping associated with a piezoelectric energy harvesting system which is called the adaptive synchronized switching harvesting (ASSH) technique. Furthermore, a self-powered circuit which implements the technique (ASSH) is proposed, which validates that the new technique can be truly self-powered. Experimental results show that the vibration amplitudes of the first two modes are reduced by about 9.27 dB and 0.96 dB in the case of the exciting signal of same amplitude ratio (3:3), respectively. Compared with other self-powered vibration damping technique, this technique not only shows its robustness, but also harvests the energy and supply power to other electronic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.