Abstract

In a piezoelectric energy harvesting (PEH) system, the dynamics and harvested power vary with different base excitation. Accurately predicting the energy harvesting capability under different types of excitation is of importance for the analysis and design of PEH systems. Many studies started the modeling and analysis of such an electromechanically coupled system under harmonic excitation. However, in real-world scenarios, environmental vibration might be irregular and impulsive. This article extends the equivalent impedance analysis from single harmonic to multiple harmonics for describing the complex dynamics and harvested power of a PEH system under nonharmonic base excitation. The proposed multiple harmonic analysis is based on the extended impedance method (EIM), which uniforms the impedance expressions of both linear and nonlinear components in a matrix form. The modeling principle and procedures of EIM are provided in detail. The power flow in the steady-state PEH systems and energy flow in the transient PEH systems are numerically discussed. Experiments based on a base-excited piezoelectric cantilever, as the energy harvester, and a full-wave bridge rectifier, as the power conditioning circuit, validate the EIM-based analysis, in terms of harvested power/energy prediction and dynamics description.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.