Abstract

We theoretically reveal the potential of the parallelism of squeezed state generation by nonlinear pulse propagation in an optical fiber. Starting from a nonlinear Schr\odinger equation coupling with phonon modes that cause Raman noise, we develop a multimode quantum theory of nonlinear propagation in an optical fiber. Based on our proposed method, we numerically simulate fiber nonlinear propagation in two conditions: solitonlike and zero-group-delay-dispersion (zero-GVD) propagation. As a result, we find that zero-GVD propagation enables the large-scale parallel generation of squeezed states relative to solitonlike propagation owing to the broadband phase matching of the four-wave mixing process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.