Abstract
The nonlinear Schrödinger (NLS) equation is a fundamental model for the nonlinear propagation of light pulses in optical fibers. We consider an integrable generalization of the NLS equation, which was first derived by means of bi‐Hamiltonian methods in [1]. The purpose of the present paper is threefold: (a) We show how this generalized NLS equation arises as a model for nonlinear pulse propagation in monomode optical fibers when certain higher‐order nonlinear effects are taken into account; (b) We show that the equation is equivalent, up to a simple change of variables, to the first negative member of the integrable hierarchy associated with the derivative NLS equation; (c) We analyze traveling‐wave solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.