Abstract

It has been suggested that the multiplicity of Ca(2+) signaling pathways in atrial myocytes may contribute to the variability of its function. This article reports on a novel Ca(2+) signaling cascade initiated by mechanical forces induced by "puffing" of solution onto the myocytes. Ca(i) transients were measured in fura-2 acetoxymethyl (AM) loaded cells using alternating 340- and 410-nm excitation waves at 1.2 kHz. Pressurized puffs of bathing solutions, applied by an electronically controlled micro-barrel system, activated slowly (approximately 300 ms) developing Ca(i) transients that lasted 1,693 +/- 68 ms at room temperature. Subsequent second and third puffs, applied at approximately 20 s intervals activated significantly smaller or no Ca(i) transients. Puff-triggered Ca(i) transients could be reactivated once again following caffeine (10 mM)-induced release of Ca(2+) from sarcoplasmic reticulum (SR). Puff-triggered Ca(i) transients were independent of [Ca(2+)](o), and activation of voltage-gated Ca(2+) or cationic stretch channels or influx of Ca(2+) on Na(+)/Ca(2+)exchanger, because puffing solution containing no Ca(2+), 10 microM diltiazem, 1 mM Cd(2+), 5 mM Ni(2+), or 100 microM Gd(3+) failed to suppress them. Puff-triggered Ca(i) transients were enhanced in paced compared to quiescent myocytes. Electrically activated Ca(i) transients triggered during the time course of puff-induced transients were unaltered, suggesting functionally separate Ca(2+) pools. Contribution of inositol 1,4,5-triphosphate (IP(3))-gated or mitochondrial Ca(2+) pools or modulation of SR stores by nitric oxide/nitric oxide synthase (NO/NOS) signaling were evaluated using 0.5 to 500 microM 2-aminoethoxydiphenyl borate (2-APB) and 0.1 to 1 microM carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and 1 mM Nomega-Nitro-L-arginine methyl ester (L-NAME) and 7-nitroindizole, respectively. Only FCCP appeared to significantly suppress the puff-triggered Ca(i) transients. It was concluded that neither Ca(2+) influx nor depolarization was required for activation of this signaling pathway. These studies suggest that pressurized puffs of solutions activate a mechanically sensitive receptor, which signals in turn the release of Ca(2+) from a limited Ca(2+) store of mitochondria. How mechanical forces are sensed and transmitted to mitochondria to induce Ca(2+) release and what role such a Ca(2+) signaling pathway plays in the physiology or pathophysiology of the heart remain to be worked out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.