Abstract

Myocytes from the epicardial border zone (EBZ) of the 5-day infarcted canine heart (IZ) have abnormal transmembrane action potentials, reduced L-type Ca2+ currents (ICa,L) and altered intracellular Ca2+ (Cai) transients compared with those of normal epicardial myocytes (NZ). We hypothesized that altered Cai cycling might be reflected in differences in Cai-dependent outward currents (Ito2). We recorded Ito2 in NZ and IZ using whole cell patch-clamp techniques. Ito2 was defined as the amplitude of the 4-aminopyridine-resistant transient outward current that was blocked by 200 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or DIDS+ ryanodine (2 microM). Ito2 were present in both NZ and IZ, but peak density was significantly reduced in IZ, particularly at positive plateau voltages. Time course of decay of Ito2 was biexponential and similar in NZ and IZ. A given peak ICa,L was usually associated with a smaller peak Ito2 in IZ. These differences were exaggerated when Ito2 and Cai transients were determined in rapidly paced cells. In summary, myocytes surviving in the EBZ of the infarcted heart have Ito2, yet they are reduced in density and can vary, particularly at fast pacing rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.