Abstract
Vaccines hold enormous potential in cancer immunotherapy by stimulating the body's immune response; unfortunately, the clinical response rates of cancer vaccines are less than 30%. Nanovaccines show the potential to enhance the treatment efficacy of conventional vaccines due to their unique properties, such as efficient co-delivery of cocktail to the secondary lymphatic system, high tumor accumulation and penetration, and customizable delivery of antigens and adjuvants. Meanwhile, the non-invasive visualization of vaccines after their delivery can yield information about in vivo distribution and performance, and aid in their subsequent optimization and translational studies. In this review, we summarize the strategies for the spatiotemporal visualization of nanovaccines in lymph nodes, including whole-body in vivo imaging, intravital organ/cell imaging, and ex vivo tissue/cell imaging. The application of imaging modalities in nanovaccine development is discussed. Moreover, strategies to achieve different combinations of imaging modalities are proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have