Abstract

Photodynamic therapy (PDT) has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment presents hypoxia, as well as the inherent antioxidant system (e.g., Nrf2) of tumor cells limits the therapeutic outcomes. Herein, a cascade-responsive "oxidative stress amplifier" (named EZ@TD) is designed by encapsulating manganese-doped carbon dots acting as a photosensitizer and catalase (CAT)-like nanozyme within pH-sensitive ZIF-8 and Zn2+-activated DNAzyme for relieving hypoxia and efficient Nrf2 gene disruption to enhance PDT. It is demonstrated that EZ@TD synergistically inhibited tumor growth and activated the antitumor immune response by inhibiting the Nrf2/ARE signaling pathway in tumors. We provide a new paradigm for amplifying intracellular oxidative stress by interfering with various signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.