Abstract

Heavy metal pollution is one of the major environmental concerns worldwide. Toxic heavy metals when untreated get accumulated in environment and can pose severe threats to living organisms. It is well known that metals play a major role either directly or indirectly in different metabolic processes of bacteria. This allows bacterial cells to grow even in the presence of some toxic heavy metals. Microbial biotechnology has thus emerged as an effective and eco friendly solution in recent years for bioremediation of heavy metals. Therefore, this review is focused on summarising bacterial adaptation mechanisms for various heavy metals. It also shares some applications of have metal tolerant bacteria in bioremediation. Bacteria have evolved a number of processes for heavy metal tolerance viz., transportation across cell membrane, accumulation on cell wall, intra as well as extracellular entrapment, formation of complexes and redox reactions which form the basis of different bioremediation strategies. The genetic determinants for most of these resistances are located on plasmids however some may be chromosomal as well. Bacterial cells can uptake heavy by both ATP dependent and ATP independent processes. Bacterial cell wall also plays a very important role in accumulating heavy metals by bacterial cells. Gram-positive bacteria accumulate much higher concentrations of heavy metals on their cell walls than that of metals gram -ve bacteria. The role of bacterial metallothioneins (MTs) in heavy metal has also been reported. Thus, heavy metal tolerant bacteria are important for bioremediation of heavy metal pollutants from areas containing high concentrations of particular heavy metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call