Abstract

In this paper, we address the challenge of multilingual sentiment analysis using a traditional lexicon and rule-based sentiment instrument that is tailored to capture sentiment patterns in a particular language. Focusing on a case study of three closely related Scandinavian languages (Danish, Norwegian, and Swedish) and using three tailored versions of VADER, we measure the relative degree of variation in valence using the OPUS corpus. We found that scores for Swedish are systematically skewed lower than Danish for translational pairs, and that scores for Norwegian are skewed higher for both other languages. We use a neural network to optimize the fit between Norwegian and Swedish respectively and Danish as the reference (target) language.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.