Abstract

Recently, potassium-ion batteries (PIBs) have been considered as one of the most promising energy storage systems; however, the slow kinetics and large volume variation induced by the large radius of potassium ions (K+) during chemical reactions lead to inferior structural stability and weak electrochemical activity for most potassium storage anodes. Herein, a multilevel space confinement strategy is proposed for developing zinc-cobalt bimetallic selenide (ZnSe/Co0.85Se@NC@C@rGO) as high-efficient anodes for PIBs by in-situ carbonizing and subsequently selenizing the resorcinol–formaldehyde (RF)-coated zeolitic imidazolate framework-8/zeolitic imidazolate framework-67 (ZIF-8/ZIF-67) encapsulated into 2D graphene. The highly porous carbon microcubes derived from ZIF-8/ZIF-67 and carbon shell arising from RF provide rich channels for ion/electron transfer, present a rigid skeleton to ensure the structural stability, offer space for accommodating the volume change, and minimize the agglomeration of active material during the insertion/extraction of large-radius K+. In addition, the three-dimensional (3D) carbon network composed of graphene and RF-derived carbon-coated microcubes accelerates the electron/ion transfer rate and improves the electrochemical reaction kinetics of the material. As a result, the as-synthesized ZnSe/Co0.85Se@NC@C@rGO as the anode of PIBs possesses the excellent rate capability of 203.9 mA h g−1 at 5 A g−1 and brilliant long-term cycling performance of 234 mA h g−1 after 2,000 cycles at 2 A g−1. Ex-situ X-ray diffraction (Ex-situ XRD) diffraction reveals that the intercalation/de-intercalation of K+ proceeds through the conversion-alloying reaction. The proposed strategy based on the spatial confinement engineering is highly effective to construct high-performance anodes for PIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call