Abstract

BackgroundThe gelada monkey (Theropithecus gelada), endemic to the Ethiopian highlands, is the only graminivorous primate, i.e., it feeds mainly on grasses and sedges. In spite of known dental, manual, and locomotor adaptations, the intestinal anatomy of geladas is similar to that of other primates. We currently lack a clear understanding of the adaptations in digestive physiology necessary for this species to subsist on a graminoid-based diet, but digestion in other graminivores, such as ruminants, relies heavily on the microbial community residing in the gastrointestinal (GI) system. Furthermore, geladas form complex, multilevel societies, making them a suitable system for investigating links between sociality and the GI microbiota.ResultsHere, we explore the gastrointestinal microbiota of gelada monkeys inhabiting an intact ecosystem and document how factors like multilevel social structure and seasonal changes in diet shape the GI microbiota. We compare the gelada GI microbiota to those of other primate species, reporting a gradient from geladas to herbivorous specialist monkeys to dietary generalist monkeys and lastly humans, the ultimate ecological generalists. We also compare the microbiotas of the gelada GI tract and the sheep rumen, finding that geladas are highly enriched for cellulolytic bacteria associated with ruminant digestion, relative to other primates.ConclusionsThis study represents the first analysis of the gelada GI microbiota, providing insights into the adaptations underlying graminivory in a primate. Our results also highlight the role of social organization in structuring the GI microbiota within a society of wild animals.

Highlights

  • The gelada monkey (Theropithecus gelada), endemic to the Ethiopian highlands, is the only graminivorous primate, i.e., it feeds mainly on grasses and sedges

  • Intrinsic structuring factors of the gelada GI microbiota In all 316 gelada samples combined, we identified a total of 1624 different operational taxonomic units (OTUs) on the 97% sequence identity level

  • We employed an alternative to traditional OTU clustering, the DADA2 algorithm that can resolve amplicon reads to the single nucleotide difference level [29], to evaluate whether finer scale resolution of the sequence data could help explain more of the variation between social groups

Read more

Summary

Introduction

The gelada monkey (Theropithecus gelada), endemic to the Ethiopian highlands, is the only graminivorous primate, i.e., it feeds mainly on grasses and sedges. We currently lack a clear understanding of the adaptations in digestive physiology necessary for this species to subsist on a graminoid-based diet, but digestion in other graminivores, such as ruminants, relies heavily on the microbial community residing in the gastrointestinal (GI) system. Geladas form complex, multilevel societies, making them a suitable system for investigating links between sociality and the GI microbiota. Foregut fermentation has evolved only a few times in mammals (e.g., in the ancestors of the ruminants and colobine monkeys), while hindgut fermenting mammals form a comparatively diverse group that includes odd-toed ungulates, rodents, and rabbits, as well as several primate species. The ways in which the microbial systems that aid in the digestive process differ between fore- and hindgut fermenters have not been thoroughly investigated, studies have found that the two groups tend to cluster separately in terms of their GI microbiomes [3, 4]. Comparative meta-studies of these processes are hindered by a high degree of variation in the protocols used for describing complex microbial communities, which can make direct comparison between studies problematic [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call