Abstract

Polybinary, optical amplitude modulated phase shift keying (AM-PSK) polybinary, M-ary amplitude shift keying (ASK), and polyquaternary signaling schemes operating at 10 Gb/s are investigated in 1550-nm lightwave systems operating over standard, single-mode fiber. The premise for exploring these signal types is that they concentrate power at frequencies closer to the optical carrier where phase distortion of the optical field from chromatic dispersion is less severe. Issues such as modulator chirp, optimal level spacing in a 4-ary ASK signal, and phase modulated to amplitude modulated (PM-AM) noise conversion from a nonzero laser linewidth are studied. It is found that higher order polybinary signals do not offer an improvement in dispersion tolerance over a duobinary signal. 4-ary ASK is demonstrated to increase the dispersion-limited distance to 225 km experimentally and 350 km through simulation, but at the expense of a /spl sim/8 dB degradation in receiver sensitivity due to the increased number of levels and the signal dependence of signal-spontaneous beat noise. Furthermore, the linewidth requirement for a 4-ary ASK signal is less than 1 MHz in order to minimize the impact of PM-AM relative intensity noise (RIN) when transmitting over 200-300 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.