Abstract

Hypoxia-inducible factor-1 (HIF-1) is a well-studied transcription factor mediating cellular adaptation to hypoxia. It also plays a crucial role under normoxic conditions, such as in inflammation, where its regulation is less well understood. The 3'-untranslated region (UTR) of HIF-1α mRNA is among the most conserved UTRs in the genome, hinting toward posttranscriptional regulation. To identify potential trans factors, we analyzed a large compilation of expression data. In contrast to its known function of being a negative regulator, we found that tristetraprolin (TTP) positively correlates with HIF-1 target genes. Mathematical modeling predicts that an additional level of posttranslational regulation of TTP can explain the observed positive correlation between TTP and HIF-1 signaling. Mechanistic studies revealed that TTP indeed changes its mode of regulation from destabilizing to stabilizing HIF-1α mRNA upon phosphorylation by p38 mitogen-activated protein kinase (MAPK)/MAPK-activated protein kinase 2. Using a model of monocyte-to-macrophage differentiation, we show that TTP-driven HIF-1α mRNA stabilization is crucial for cell migration. This demonstrates the physiological importance of a hitherto-unknown mechanism for multilevel regulation of HIF-1α in normoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.